W6D1 【今日話題:運(yùn)算問題】
計(jì)算是父母開始輔導(dǎo)孩子數(shù)學(xué)比較注重的方面,但是輔導(dǎo)就側(cè)重在口算的速度和巧算的方法上。
很多孩子正常運(yùn)算速度很快,但出現(xiàn)了 4+()=7, ()+3=5+6,類似這種等式的題目時(shí)就不會(huì)算了,這種情況出現(xiàn)本質(zhì)上意味著兒童:
A、兒童做題的類型過于單一
B、兒童并沒有實(shí)際理解等式的含義是什么
C、兒童并沒有理解加法的含義是什 么
D、還不夠熟悉口算題目
【今日育兒解析:運(yùn)算問題】
A、兒童做題的類型過于單一(這是表面原因而不是本質(zhì))
B、兒童并沒有實(shí)際理解等式的含義是什么(這是本質(zhì)的原因)
C、兒童并沒有理解加法的含義是什 么(這種情況也會(huì)出現(xiàn)在減法類似題目中)
D、還不夠熟悉口算題目(太熟悉某種題型也會(huì)出現(xiàn)這種結(jié)果)
題中現(xiàn)象是多數(shù)父母在輔導(dǎo)兒童口 算的過程中發(fā)現(xiàn)的問題。多數(shù)父母認(rèn)為出現(xiàn)這個(gè)情況是兒童沒有見過類似的題目所以不會(huì)做。
以前做的都是 A+B=?這樣形式的口算,就算三個(gè)數(shù)也可以是 A+B+C=? 這樣形式的口算。左邊數(shù)字,右邊計(jì)算結(jié)果。
有些孩子光口算就刷過這樣上千道的題目。刷過越多這樣題目的孩子越可能出現(xiàn)這樣的情況,就是思維出現(xiàn)了定式不夠靈活了,認(rèn)為口算就是左邊給我得數(shù),右邊計(jì)算答案,當(dāng)成為條件反射,思維就很難扭轉(zhuǎn)了。
這樣的刷題只是反映表象,是為了提高計(jì)算的熟練和速度。但實(shí)際兒童出現(xiàn) 4+()=7,()+3=5+6 不會(huì)算的本質(zhì)原因是不理解等式真正的含義甚至等號(hào)的意思是什么。
做常規(guī)的口算孩子明白就是讓他把左邊的數(shù)字運(yùn)算結(jié)果填寫在右邊就好了,現(xiàn)在填寫的位置變了孩子就不知道什么意思了。這不是不會(huì)運(yùn)算,而是不理解在運(yùn)算中等號(hào)代表什么意思。
等號(hào)代表的不是計(jì)算結(jié)果的意思,不是孩子運(yùn)算完畢就需要寫等號(hào)給出結(jié)果,而是代表等號(hào)兩邊的數(shù)量相等。
這是兒童早期學(xué)習(xí)運(yùn)算常見的一個(gè)誤區(qū),這個(gè)誤區(qū)導(dǎo)致孩子在學(xué)習(xí)運(yùn)算最初就沒有真正的理解,為之后高年級(jí)應(yīng)用題中尋找等式關(guān)系,初中學(xué)習(xí)方程埋下了隱患。
因此,在家庭教育中,兒童早期接觸運(yùn)算的時(shí)候,父母和孩子應(yīng)該更多的玩抽出一個(gè)數(shù)字,然后用自己的方法算出答案的游戲。
抽出一張撲克 8,然后大家一人發(fā) 5 張牌,用自己手里的牌,用加法減法都可以運(yùn)算出 8,用上的牌就是自己贏得的牌。還可以用自己手里的牌組 合出等式來,隨意怎么組合都可以, 用的牌越多贏的牌越多。
這樣的玩法就是基于理解等式含義的玩法,能夠幫助孩子理解等號(hào)是鏈接兩邊數(shù)量相等而不是為了計(jì)算結(jié)果的時(shí)候的一個(gè)標(biāo)志。
W6D2 【今日話題:孩子用“笨辦法” 解題】
數(shù)學(xué)學(xué)習(xí)早期,兒童經(jīng)常會(huì)使用比較笨拙的辦法來做自己一下子看不出答案的題目,舉例:16+7,孩子一下子算不出來,采用的是 16+1=17,16+2=18......一直算到 16+7=23,當(dāng)兒童出現(xiàn)這樣的情況的 時(shí)候預(yù)示著:
A、這是兒童正常的大腦加工方式
B、這是個(gè)位數(shù)加法不熟練的結(jié)果
C、這是兒童不會(huì)豎式加法的原因
D、這是兒童不懂拆分?jǐn)?shù)字的結(jié)果
【今日育兒解析:孩子用“笨辦法”解題】
A、這是兒童正常的大腦加工方式(這確實(shí)是 8 歲前孩子正常的大腦加工形式)
B、這是個(gè)位數(shù)加法不熟練的結(jié)果(知道 6+7=13,未必能快速反應(yīng)出 16+7=23)
C、這是兒童不會(huì)豎式加法的原因(豎式是基于理解后使用的一種計(jì)算方法而已)
D、這是兒童不懂拆分?jǐn)?shù)字的結(jié)果(數(shù)字拆分的引入必須在順序思維扎實(shí)之后)
很多父母都碰到過這樣的情況,孩子題:1+3+9=?孩子這樣算 1+3=4, 4+9=13。父母說:你看1+9=10 啊, 10+3=13。這樣多好算。然后到下一 個(gè)題目的時(shí)候,孩子還是按照自己的步驟在計(jì)算。
這其實(shí)不是孩子不理解或者不聰明的問題,而是兒童正常思維的正常加工方式。
兒童最初學(xué)習(xí)運(yùn)算的思維加工方式其實(shí)就是清點(diǎn),清點(diǎn)總數(shù)來理解加法。比如:給你3 個(gè),再給你 5 個(gè), 就是從把這些都數(shù)一遍,然后過渡到 從 3 個(gè)開始數(shù) 5 個(gè)是幾,然后才是知道我從 5 個(gè)開始數(shù) 3 下就行,這樣數(shù)的少。
這是一個(gè)正常的思維加工的次序,兒童需要扎實(shí)掌握這一套思維加工方式。所以 16+7 的時(shí)候,兒童就用自己的思維加工方式從 16 開始數(shù) 7 下 看看是幾。
這就是兒童學(xué)習(xí)運(yùn)算初期的思維加工方式:
1、以目的優(yōu)先就是計(jì)算出來結(jié)果。 所以 16+7,他不會(huì)把 7 拆分成 4+3,16 先加4等于20,再加3等于23;
2、次序思維,一個(gè)信息一個(gè)信息處理。所以 1+3+9 你教很多回,孩子都愿意 1+3=4,4+9=13 這樣算。
加工方式在人的大腦中是以神經(jīng)群組的方式存在的,大人能夠很快意識(shí) 16+7 是 10+6+7,得出 23 的答案是因?yàn)樵诖笕说拇竽X里 6+7 和10+13,這兩組神經(jīng)元組已經(jīng)相互連通融合了。 但是孩子不是這樣。
如果你不讓兒童按照自己的次序去不斷擴(kuò)展自己思維加工方式的神經(jīng)元組,而是非要開辟另一個(gè)神經(jīng)元組,其實(shí)另一個(gè)神經(jīng)元組和目前已有的神經(jīng)元組也沒辦法融合。
因此,父母不應(yīng)該阻止兒童使用自己的方法,同時(shí)可以把自己使用的方法緩慢的口述出來,口述出來的目的不是強(qiáng)行讓孩子使用這種方法,而只是說給孩子聽有這個(gè)方法。當(dāng)他自己的思維方式扎實(shí)后,他就會(huì)開始自己嘗試鏈接新的群組。
W6D3 【今日話題:應(yīng)用題】
應(yīng)用題是多數(shù)兒童數(shù)學(xué)學(xué)習(xí)的第一個(gè)門檻,很多在運(yùn)算上成績(jī)很不錯(cuò)的孩子會(huì)在應(yīng)用題的解答上會(huì)出現(xiàn)問題。比如:風(fēng)風(fēng)有15 張郵票,他給了苗苗 3張后,他們倆的郵票數(shù)量一樣多了。問:苗苗原來有幾張郵票? 兒童不會(huì)解答這道題目的關(guān)鍵是:
A、不知道郵票是什么東西,沒有見過這種東西 B、不理解代詞的關(guān)系,他們倆一樣多,這個(gè)他們是誰
C、不理解關(guān)鍵詞語的意思,“原來” 是什么意思 D、不理解語句之間的關(guān)系,一樣多是什么時(shí)候一樣多
【今日育兒解析:應(yīng)用題】
A、不知道郵票是什么東西,沒有見過這種東西(這是多數(shù)兒童首先會(huì)提出來的疑問)
B、不理解代詞的關(guān)系,他們倆一樣多,這個(gè)他們是誰(這個(gè)多數(shù)兒童沒有干擾條件的情況下是可以對(duì)應(yīng)的)
C、不理解關(guān)鍵詞語的意思,“原來” 是什么意思(這是最大的障礙)
D、不理解語句之間的關(guān)系,一樣多是什么時(shí)候一樣多(多數(shù)能夠明白是給了之后一樣多)
兒童做應(yīng)用題幾乎都會(huì)卡在理解的問題上。最常見的理解障礙有兩個(gè)點(diǎn): 一,是對(duì)語言中提到的名詞不理解場(chǎng)景不理解。這個(gè)如果家庭中親子關(guān)系語言溝通良好的家庭,孩子會(huì)在讀題的同時(shí)就提出來問題。
比如:郵票是什么?植樹是什么?這是兒童理解的第一個(gè)障礙。
這個(gè)障礙沒有立刻解決的方法。父母可以梳理孩子的題目,找到實(shí)物(郵票拿出來)或者適合的場(chǎng)景給孩子。 如果對(duì) 5 歲以上的兒童,實(shí)際場(chǎng)景的圖片也是可以幫助理解的,比如搜索一下植樹的場(chǎng)景給孩子看。
因?yàn)楹⒆雍痛笕怂季S不同,不懂得在題目中跳過一些不重要的東西,把自己不理解的東西替換成自己可以理解的。比如郵票換成蘋果,兒童是不具備這樣的理解能力的。
所以如果題目中是一個(gè)我們大人沒見過的東西,比如我換一個(gè)科科納果,雖然我們也不知道是啥,但我們知道反正是一個(gè)東西,不影響我解題。但是孩子是無法理解的,這點(diǎn)上就顯示了日常家庭常識(shí)的重要性。
解題的第二個(gè)障礙,也是多數(shù)孩子碰到的障礙是不理解其中關(guān)鍵的副詞。 原來、現(xiàn)在、如果、原計(jì)劃、實(shí)際, 這類詞語是兒童最難理解的詞語。這 類詞語在 8 歲以前就應(yīng)該在生活中結(jié)合場(chǎng)景頻繁使用。
例如:
1.本來我們的計(jì)劃是暑假去 A 公園 的,但是發(fā)現(xiàn) B 公園正好舉辦你喜歡的話劇,就去了 B 公園。
2.原來你有這本書的,后來你送給小妹妹了,所以現(xiàn)在家里沒有這本書 了,如果你想看,我們可以重新買一本新的。
3.我今天出門只帶了 20 元,如果剛才你不買那個(gè)小汽車的話,20 元就可以買兩個(gè)冰棍吃了??上覀冑I過小汽車了,現(xiàn)在沒有錢買冰棍了。
說話一定要完整,家長(zhǎng)不要認(rèn)為孩子一定聽得懂,很多情況下都是因?yàn)榧议L(zhǎng)說省略的語句或者半截,家長(zhǎng)覺得沒有問題能夠理解,而孩子都是懵懂的狀態(tài)。
W6D4【今日話題:數(shù)學(xué)工具使用】
工具可以幫助人們更高效的解決問題,在數(shù)學(xué)中工具的使用也很重要,畫圖是數(shù)學(xué)解題的重要工具。這種工具可以幫助梳理小學(xué)階段所有數(shù)學(xué)難題,那么數(shù)學(xué)工具應(yīng)該如何教給孩子使用更好?
A、專門做一個(gè)專題講解給孩子講解
B、父母在輔導(dǎo)孩子作業(yè)的時(shí)候就這樣使用
C、等遇到需要使用的題目教給孩子
D、平時(shí)多把自己碰到的難題用圖畫的形式梳理出來
【今日育兒解析:數(shù)學(xué)工具使用】
A、專門做一個(gè)專題講解給孩子講解(專門講的就成了教知識(shí)而不是教運(yùn)用)
B、父母在輔導(dǎo)孩子作業(yè)的時(shí)候就這樣使用(自然而然的動(dòng)作,兒童會(huì)主動(dòng)學(xué)習(xí))
C、等遇到需要使用的題目教給孩子(熏陶學(xué)習(xí)的方法是自己示范而非教授)
D、平時(shí)多把自己碰到的難題用圖畫的形式梳理出來(這是更高級(jí)別思維導(dǎo)圖的運(yùn)用了)
兒童在學(xué)習(xí)數(shù)學(xué)的過程中總會(huì)碰到難題,難題一般的難點(diǎn)主要在三點(diǎn)。
第一:涉及到的主體有 3 個(gè)或者 3 個(gè) 以上,他們彼此之間都有關(guān)系。例如: 小貓?jiān)跇翘菡虚g,小狗比它高 3 個(gè)階梯,小狗和樓梯最高處相隔 2 個(gè)階梯,問這個(gè)樓梯一共有多少層?
第二:涉及到的主體之間關(guān)系較復(fù)雜。例如:弟弟今年 7 歲,弟弟 4 年后的年齡與哥哥 2 年前的年齡相等, 哥哥今年多少歲。雖然只有兩個(gè)人但是兩個(gè)人之間的關(guān)系是在各自年齡運(yùn)算后的關(guān)系。
第三:涉及到的主體之間有規(guī)律的延續(xù)。例如:媽媽和小紅一起挑豌豆, 小紅每挑 3 個(gè)豌豆,媽媽可以挑 8 個(gè),
最后媽媽一共挑了 64 個(gè),問小紅挑了幾個(gè)?
這三種題目都可以使用工具去解決。
第一個(gè)可以使用類似數(shù)軸的圖示表示,第二個(gè)可以畫線段圖,第三個(gè)可以利用表格。畫圖的方法并不是為了 快速解題,根本是為了梳理自己的思維,比較徹底的理解題目。
因?yàn)閮和拇竽X中無法一次性存放過多的東西,讀完小貓?jiān)谡虚g,讀到后面,小狗高3 個(gè),恩,加上 3 個(gè),
小狗又和上面相隔 2 個(gè),3 個(gè)再加 2個(gè)再加 1 個(gè),算到這,75%以上的孩子已經(jīng)忘記小貓?jiān)谡虚g的事情了。
畫圖解題的方式可以有效避免兒童遺漏問題條件,對(duì)應(yīng)圖和每段短句去
理解題目。
這種方法兒童最快學(xué)會(huì)的方式是模仿父母,父母給孩子講題有效的方法
是:
1、 2、
讀題的同時(shí)用筆圈出重點(diǎn)的詞語畫出來;
讀完題后自己采用畫圖的方式畫出來,畫出來的時(shí)候要慢要說出來自己畫的是那一句,讀一句的內(nèi)容就把它畫出來。
兒童通過父母的示范,一般 3-5 次就可以懂得使用畫圖這個(gè)工具去幫助自己解決難題。動(dòng)作要自然,就是自己思考的過程,真實(shí)不是教孩子就是 自己做的過程,這樣孩子才愿意去模仿。如果只是教給孩子,孩子就會(huì)覺得這是對(duì)我的要求,也就不太愿意去學(xué)習(xí)或者去用了。
W6D5【今日話題:過渡等值轉(zhuǎn)換】
小學(xué)數(shù)學(xué)中數(shù)字的抽象關(guān)系主要表現(xiàn)在不同形式相同表現(xiàn)的等值轉(zhuǎn)換中,比如 50%=1/2=0.5,這種數(shù)字關(guān)系是兒童掌握的難點(diǎn)。難在需要脫離掉視覺不同的干擾去認(rèn)知,想讓兒童 能夠順利過渡等值轉(zhuǎn)換,可以在家庭 中提前鋪墊什么內(nèi)容?
A、提前教給孩子這方面的知識(shí)
B、用生活中涉及到的數(shù)字去結(jié)合視 覺感知
C、多提及生活中不同形式相同本質(zhì) 的事物
D、多做一些類似等值轉(zhuǎn)換的題目練習(xí)
【今日育兒解析:過渡等值轉(zhuǎn)換】
A、提前給孩子教這方面的知識(shí)(教 是被動(dòng)的,學(xué)才是主動(dòng)的) B、用生活中涉及到的數(shù)字去結(jié)合視 覺感知(這是可以采用的方法) C、多提及生活中不同形式相同本質(zhì) 的事物(這是最無形的本質(zhì)上的思維 培育) D、多做一些類似等值轉(zhuǎn)換的題目練 習(xí)(能夠應(yīng)付考試)
數(shù)學(xué)中涉及到尋找等式關(guān)系,有很多 等量代換的內(nèi)容,這是數(shù)學(xué)思維的基 礎(chǔ)。這種思維天然的形成最早是來自 生活的。
你看給你 10 元錢,你可以去買不同 的東西,2 瓶酸奶、3 根冰棍、1 袋薯 片、4 瓶飲料,這些東西不同吧,但是用價(jià)格來表示都是 10 元。你給孩子同樣的錢,應(yīng)該提示他可以買不同選項(xiàng)的東西。
手機(jī)的電量是可以用百分比來表示 的,顯示低于 20%就需要充電了;那人的精力呢?同樣可以用百分比表示啊,我太累了,只剩下 10%的能量 了,需要喝水和吃飯了;汽油剩下多 少了?還剩下 8%,得加油了。你看電量、人的能力、汽油都可以用百分 比的數(shù)字來表示,雖然事物不同,但 是都可以用同樣的方式來衡量。
在數(shù)字抽象關(guān)系中,用不同形式,表 示相同東西的等值轉(zhuǎn)換,其實(shí)本質(zhì)上 也是視覺上看起來不同,但實(shí)際表示 的卻是一樣的東西。
你跟孩子玩過水嗎?水燒開的時(shí)候 上面冒出來的氣,還有水凍到冷凍室 里變成的樣子,都是水,可以不同的 時(shí)候樣子是不一樣的。這都是生活中 的等值轉(zhuǎn)換,只有確實(shí)的做過觀察過 才能夠意識(shí)到,不是要等到學(xué)校里老 師授課的時(shí)候教水的三種狀態(tài)。
你要回家,怎么回?你可以爬樓梯, 也可以坐電梯,你還可以坐電梯忘了按樓層,到了更高一層再下來回家; 還可以走到地下室,從地下室再坐電 梯回家。本質(zhì)都是回家,但是采用的 是不同的方式。你有帶孩子體驗(yàn)過 嗎?
兒童真正的思維培育在家庭中可以 做的是需要聯(lián)系現(xiàn)實(shí)生活的,從實(shí)際 生活中抽象出來的思維能力更多培
育的解決實(shí)際問題的創(chuàng)造性的人才 而不是只能解決紙面問題的操作型 的人才。